Module:TableTools: Difference between revisions
en ws>Xover m (1 revision imported from w:Module:TableTools: import template docs from enWP) |
Shnehrashmi (talk | contribs) m (1 revision imported: Importing Infobox Template) |
||
Line 1: | Line 1: | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- | -- TableTools -- | ||
-- -- | -- -- | ||
-- This module includes a number of functions for dealing with Lua tables. -- | -- This module includes a number of functions for dealing with Lua tables. -- | ||
-- It is a meta-module, meant to be called from other Lua modules, and should | -- It is a meta-module, meant to be called from other Lua modules, and should -- | ||
-- be called directly from #invoke. | -- not be called directly from #invoke. -- | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
local libraryUtil = require('libraryUtil') | local libraryUtil = require('libraryUtil') | ||
Line 17: | Line 19: | ||
local checkTypeMulti = libraryUtil.checkTypeMulti | local checkTypeMulti = libraryUtil.checkTypeMulti | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- isPositiveInteger | -- isPositiveInteger | ||
Line 25: | Line 28: | ||
-- hash part of a table. | -- hash part of a table. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.isPositiveInteger(v) | function p.isPositiveInteger(v) | ||
if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then | |||
return true | |||
else | |||
return false | |||
end | |||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- isNan | -- isNan | ||
-- | -- | ||
-- This function returns true if the given number is a NaN value, and false | -- This function returns true if the given number is a NaN value, and false | ||
-- not. Although it doesn't operate on tables, it is included here as it is | -- if not. Although it doesn't operate on tables, it is included here as it is | ||
-- for determining whether a value can be a valid table key. Lua will | -- useful for determining whether a value can be a valid table key. Lua will | ||
-- error if a NaN is used as a table key. | -- generate an error if a NaN is used as a table key. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.isNan(v) | function p.isNan(v) | ||
if type(v) == 'number' and tostring(v) == '-nan' then | |||
return true | |||
else | |||
return false | |||
end | |||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- shallowClone | -- shallowClone | ||
Line 48: | Line 63: | ||
-- table will have no metatable of its own. | -- table will have no metatable of its own. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.shallowClone(t) | function p.shallowClone(t) | ||
local ret = {} | local ret = {} | ||
for k, v in pairs(t) do | for k, v in pairs(t) do | ||
Line 57: | Line 72: | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- removeDuplicates | -- removeDuplicates | ||
Line 64: | Line 80: | ||
-- removed, but otherwise the array order is unchanged. | -- removed, but otherwise the array order is unchanged. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
function p.removeDuplicates( | --]] | ||
checkType('removeDuplicates', 1, | function p.removeDuplicates(t) | ||
checkType('removeDuplicates', 1, t, 'table') | |||
local isNan = p.isNan | local isNan = p.isNan | ||
local ret, exists = {}, {} | local ret, exists = {}, {} | ||
for | for i, v in ipairs(t) do | ||
if isNan(v) then | if isNan(v) then | ||
-- NaNs can't be table keys, and they are also unique, so we don't need to check existence. | -- NaNs can't be table keys, and they are also unique, so we don't need to check existence. | ||
Line 77: | Line 94: | ||
exists[v] = true | exists[v] = true | ||
end | end | ||
end | end | ||
end | end | ||
return ret | return ret | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- numKeys | -- numKeys | ||
Line 88: | Line 106: | ||
-- keys that have non-nil values, sorted in numerical order. | -- keys that have non-nil values, sorted in numerical order. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.numKeys(t) | function p.numKeys(t) | ||
checkType('numKeys', 1, t, 'table') | checkType('numKeys', 1, t, 'table') | ||
local isPositiveInteger = p.isPositiveInteger | local isPositiveInteger = p.isPositiveInteger | ||
local nums = {} | local nums = {} | ||
for k in pairs(t) do | for k, v in pairs(t) do | ||
if isPositiveInteger(k) then | if isPositiveInteger(k) then | ||
nums[#nums + 1] = k | nums[#nums + 1] = k | ||
Line 101: | Line 120: | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- affixNums | -- affixNums | ||
Line 106: | Line 126: | ||
-- This takes a table and returns an array containing the numbers of keys with the | -- This takes a table and returns an array containing the numbers of keys with the | ||
-- specified prefix and suffix. For example, for the table | -- specified prefix and suffix. For example, for the table | ||
-- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will | -- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will | ||
-- {1, 3, 6}. | -- return {1, 3, 6}. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.affixNums(t, prefix, suffix) | function p.affixNums(t, prefix, suffix) | ||
checkType('affixNums', 1, t, 'table') | checkType('affixNums', 1, t, 'table') | ||
Line 116: | Line 137: | ||
local function cleanPattern(s) | local function cleanPattern(s) | ||
-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally. | -- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally. | ||
s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1') | |||
return s | |||
end | end | ||
Line 126: | Line 148: | ||
local nums = {} | local nums = {} | ||
for k in pairs(t) do | for k, v in pairs(t) do | ||
if type(k) == 'string' then | if type(k) == 'string' then | ||
local num = mw.ustring.match(k, pattern) | local num = mw.ustring.match(k, pattern) | ||
if num then | if num then | ||
Line 138: | Line 160: | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- numData | -- numData | ||
-- | -- | ||
-- Given a table with keys like | -- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table | ||
-- of subtables in the format | -- of subtables in the format | ||
-- {[1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'}} | -- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} } | ||
-- Keys that don't end with an integer are stored in a subtable named "other". | -- Keys that don't end with an integer are stored in a subtable named "other". | ||
-- compress option compresses the table so that it can be iterated over with | -- The compress option compresses the table so that it can be iterated over with | ||
-- ipairs. | -- ipairs. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.numData(t, compress) | function p.numData(t, compress) | ||
checkType('numData', 1, t, 'table') | checkType('numData', 1, t, 'table') | ||
Line 177: | Line 201: | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- compressSparseArray | -- compressSparseArray | ||
Line 184: | Line 209: | ||
-- ipairs. | -- ipairs. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.compressSparseArray(t) | function p.compressSparseArray(t) | ||
checkType('compressSparseArray', 1, t, 'table') | checkType('compressSparseArray', 1, t, 'table') | ||
Line 194: | Line 220: | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- sparseIpairs | -- sparseIpairs | ||
Line 200: | Line 227: | ||
-- handle nil values. | -- handle nil values. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.sparseIpairs(t) | function p.sparseIpairs(t) | ||
checkType('sparseIpairs', 1, t, 'table') | checkType('sparseIpairs', 1, t, 'table') | ||
Line 216: | Line 244: | ||
end | end | ||
--[[ | |||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
-- size | -- size | ||
Line 222: | Line 251: | ||
-- but for arrays it is more efficient to use the # operator. | -- but for arrays it is more efficient to use the # operator. | ||
------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ||
--]] | |||
function p.size(t) | function p.size(t) | ||
checkType('size', 1, t, 'table') | checkType('size', 1, t, 'table') | ||
local i = 0 | local i = 0 | ||
for | for k in pairs(t) do | ||
i = i + 1 | i = i + 1 | ||
end | end | ||
return i | return i | ||
end | end | ||
local function defaultKeySort(item1, item2) | local function defaultKeySort(item1, item2) | ||
Line 236: | Line 268: | ||
if type1 ~= type2 then | if type1 ~= type2 then | ||
return type1 < type2 | return type1 < type2 | ||
else -- This will fail with table, boolean, function. | |||
return item1 < item2 | return item1 < item2 | ||
end | end | ||
end | end | ||
-- | --[[ | ||
Returns a list of the keys in a table, sorted using either a default | |||
comparison function or a custom keySort function. | |||
]] | |||
function p.keysToList(t, keySort, checked) | function p.keysToList(t, keySort, checked) | ||
if not checked then | if not checked then | ||
checkType('keysToList', 1, t, 'table') | checkType('keysToList', 1, t, 'table') | ||
checkTypeMulti('keysToList', 2, keySort, {'function', 'boolean', 'nil'}) | checkTypeMulti('keysToList', 2, keySort, { 'function', 'boolean', 'nil' }) | ||
end | end | ||
local | local list = {} | ||
local index = 1 | local index = 1 | ||
for | for key, value in pairs(t) do | ||
list[index] = key | |||
index = index + 1 | index = index + 1 | ||
end | end | ||
if keySort ~= false then | if keySort ~= false then | ||
keySort = type(keySort) == 'function' and keySort or defaultKeySort | keySort = type(keySort) == 'function' and keySort or defaultKeySort | ||
table.sort( | |||
table.sort(list, keySort) | |||
end | end | ||
return | return list | ||
end | end | ||
-- | --[[ | ||
Iterates through a table, with the keys sorted using the keysToList function. | |||
If there are only numerical keys, sparseIpairs is probably more efficient. | |||
]] | |||
function p.sortedPairs(t, keySort) | function p.sortedPairs(t, keySort) | ||
checkType('sortedPairs', 1, t, 'table') | checkType('sortedPairs', 1, t, 'table') | ||
checkType('sortedPairs', 2, keySort, 'function', true) | checkType('sortedPairs', 2, keySort, 'function', true) | ||
local | local list = p.keysToList(t, keySort, true) | ||
local i = 0 | local i = 0 | ||
return function () | return function() | ||
i = i + 1 | i = i + 1 | ||
local key = | local key = list[i] | ||
if key ~= nil then | if key ~= nil then | ||
return key, t[key] | return key, t[key] | ||
Line 293: | Line 321: | ||
end | end | ||
-- | --[[ | ||
Returns true if all keys in the table are consecutive integers starting at 1. | |||
--]] | |||
function p.isArray(t) | |||
checkType("isArray", 1, t, "table") | |||
-- | |||
function p.isArray( | |||
local i = 0 | local i = 0 | ||
for | for k, v in pairs(t) do | ||
i = i + 1 | i = i + 1 | ||
if | if t[i] == nil then | ||
return false | return false | ||
end | end | ||
Line 333: | Line 337: | ||
end | end | ||
-- | -- { "a", "b", "c" } -> { a = 1, b = 2, c = 3 } | ||
function p.invert(array) | |||
checkType("invert", 1, array, "table") | |||
function p.invert( | |||
checkType("invert", 1, | |||
local map = {} | local map = {} | ||
for i, v in ipairs( | for i, v in ipairs(array) do | ||
map[v] = i | |||
end | end | ||
return map | return map | ||
end | end | ||
-- | --[[ | ||
{ "a", "b", "c" } -> { ["a"] = true, ["b"] = true, ["c"] = true } | |||
--]] | |||
function p.listToSet(t) | |||
checkType("listToSet", 1, t, "table") | |||
-- | |||
function p.listToSet( | |||
checkType("listToSet", 1, | |||
local set = {} | local set = {} | ||
for _, | for _, item in ipairs(t) do | ||
set[item] = true | |||
end | end | ||
return set | return set | ||
end | end | ||
-- | --[[ | ||
Recursive deep copy function. | |||
Preserves identities of subtables. | |||
]] | |||
local function _deepCopy(orig, includeMetatable, already_seen) | local function _deepCopy(orig, includeMetatable, already_seen) | ||
-- Stores copies of tables indexed by the original table. | -- Stores copies of tables indexed by the original table. | ||
already_seen = already_seen or {} | already_seen = already_seen or {} | ||
local copy = already_seen[orig] | local copy = already_seen[orig] | ||
if copy ~= nil then | if copy ~= nil then | ||
return copy | return copy | ||
end | end | ||
if type(orig) == 'table' then | if type(orig) == 'table' then | ||
copy = {} | copy = {} | ||
for orig_key, orig_value in pairs(orig) do | for orig_key, orig_value in pairs(orig) do | ||
copy[ | copy[deepcopy(orig_key, includeMetatable, already_seen)] = deepcopy(orig_value, includeMetatable, already_seen) | ||
end | end | ||
already_seen[orig] = copy | already_seen[orig] = copy | ||
if includeMetatable then | if includeMetatable then | ||
local mt = getmetatable(orig) | local mt = getmetatable(orig) | ||
if mt ~= nil then | if mt ~= nil then | ||
local mt_copy = | local mt_copy = deepcopy(mt, includeMetatable, already_seen) | ||
setmetatable(copy, mt_copy) | setmetatable(copy, mt_copy) | ||
already_seen[mt] = mt_copy | already_seen[mt] = mt_copy | ||
Line 411: | Line 400: | ||
function p.deepCopy(orig, noMetatable, already_seen) | function p.deepCopy(orig, noMetatable, already_seen) | ||
checkType("deepCopy", 3, already_seen, "table", true) | checkType("deepCopy", 3, already_seen, "table", true) | ||
return _deepCopy(orig, not noMetatable, already_seen) | return _deepCopy(orig, not noMetatable, already_seen) | ||
end | end | ||
-- | --[[ | ||
Concatenates all values in the table that are indexed by a number, in order. | |||
sparseConcat{ a, nil, c, d } => "acd" | |||
sparseConcat{ nil, b, c, d } => "bcd" | |||
]] | |||
function p.sparseConcat(t, sep, i, j) | function p.sparseConcat(t, sep, i, j) | ||
local | local list = {} | ||
local | local list_i = 0 | ||
for _, v in p.sparseIpairs(t) do | for _, v in p.sparseIpairs(t) do | ||
list_i = list_i + 1 | |||
list[list_i] = v | |||
end | end | ||
return table.concat( | return table.concat(list, sep, i, j) | ||
end | end | ||
-- | --[[ | ||
-- This returns the length of a table, or the first integer key n counting from | |||
-- | -- 1 such that t[n + 1] is nil. It is similar to the operator #, but may return | ||
-- a different value when there are gaps in the array portion of the table. | |||
-- | -- Intended to be used on data loaded with mw.loadData. For other tables, use #. | ||
-- Note: #frame.args in frame object always be set to 0, regardless of | |||
-- the number of unnamed template parameters, so use this function for | |||
-- frame.args. | |||
-- Note: #frame.args in frame object always be set to 0, regardless of | --]] | ||
-- of unnamed template parameters, so use this function for frame.args. | function p.length(t) | ||
-- | local i = 1 | ||
function p.length(t | while t[i] ~= nil do | ||
i = i + 1 | |||
end | |||
local | return i - 1 | ||
end | end | ||
function p.inArray(arr, valueToFind) | function p.inArray(arr, valueToFind) | ||
checkType("inArray", 1, arr, "table") | checkType("inArray", 1, arr, "table") | ||
-- if valueToFind is nil, error? | -- if valueToFind is nil, error? | ||
for _, v in ipairs(arr) do | for _, v in ipairs(arr) do | ||
if v == valueToFind then | if v == valueToFind then | ||
Line 475: | Line 448: | ||
end | end | ||
end | end | ||
return false | return false | ||
end | end | ||
return p | return p |
Revision as of 13:02, 26 February 2023
Lua error in package.lua at line 80: module 'strict' not found. This module includes a number of functions for dealing with Lua tables. It is a meta-module, meant to be called from other Lua modules, and should not be called directly from #invoke.
Loading the module
To use any of the functions, first you must load the module.
local TableTools = require('Module:TableTools')
isPositiveInteger
TableTools.isPositiveInteger(value)
Returns true
if value
is a positive integer, and false
if not. Although it doesn't operate on tables, it is included here as it is useful for determining whether a given table key is in the array part or the hash part of a table.
isNan
TableTools.isNan(value)
Returns true
if value
is a NaN value, and false
if not. Although it doesn't operate on tables, it is included here as it is useful for determining whether a value can be a valid table key. (Lua will generate an error if a NaN value is used as a table key.)
shallowClone
TableTools.shallowClone(t)
Returns a clone of a table. The value returned is a new table, but all subtables and functions are shared. Metamethods are respected, but the returned table will have no metatable of its own. If you want to make a new table with no shared subtables and with metatables transferred, you can use mw.clone instead.
removeDuplicates
TableTools.removeDuplicates(t)
Removes duplicate values from an array. This function is only designed to work with standard arrays: keys that are not positive integers are ignored, as are all values after the first nil
value. (For arrays containing nil
values, you can use compressSparseArray first.) The function tries to preserve the order of the array: the earliest non-unique value is kept, and all subsequent duplicate values are removed. For example, for the table {5, 4, 4, 3, 4, 2, 2, 1}
removeDuplicates will return {5, 4, 3, 2, 1}
numKeys
TableTools.numKeys(t)
Takes a table t
and returns an array containing the numbers of any positive integer keys that have non-nil values, sorted in numerical order. For example, for the table {'foo', nil, 'bar', 'baz', a = 'b'}
, numKeys will return {1, 3, 4}
.
affixNums
TableTools.affixNums(t, prefix, suffix)
Takes a table t
and returns an array containing the numbers of keys with the optional prefix prefix
and the optional suffix suffix
. For example, for the table {a1 = 'foo', a3 = 'bar', a6 = 'baz'}
and the prefix 'a'
, affixNums will return {1, 3, 6}
. All characters in prefix
and suffix
are interpreted literally.
numData
TableTools.numData(t, compress)
Given a table with keys like "foo1", "bar1", "foo2", and "baz2", returns a table of subtables in the format { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
. Keys that don't end with an integer are stored in a subtable named "other". The compress option compresses the table so that it can be iterated over with ipairs.
compressSparseArray
TableTools.compressSparseArray(t)
Takes an array t
with one or more nil values, and removes the nil values while preserving the order, so that the array can be safely traversed with ipairs. Any keys that are not positive integers are removed. For example, for the table {1, nil, foo = 'bar', 3, 2}
, compressSparseArray will return {1, 3, 2}
.
sparseIpairs
TableTools.sparseIpairs(t)
This is an iterator function for traversing a sparse array t
. It is similar to ipairs, but will continue to iterate until the highest numerical key, whereas ipairs may stop after the first nil
value. Any keys that are not positive integers are ignored.
Usually sparseIpairs is used in a generic for
loop.
for i, v in TableTools.sparseIpairs(t) do
-- code block
end
Note that sparseIpairs uses the pairs function in its implementation. Although some table keys appear to be ignored, all table keys are accessed when it is run.
size
TableTools.size(t)
Finds the size of a key/value pair table. For example, for the table {foo = 'foo', bar = 'bar'}
, size will return 2
. The function will also work on arrays, but for arrays it is more efficient to use the # operator. Note that to find the table size, this function uses the pairs function to iterate through all of the table keys.
--[[
------------------------------------------------------------------------------------
-- TableTools --
-- --
-- This module includes a number of functions for dealing with Lua tables. --
-- It is a meta-module, meant to be called from other Lua modules, and should --
-- not be called directly from #invoke. --
------------------------------------------------------------------------------------
--]]
local libraryUtil = require('libraryUtil')
local p = {}
-- Define often-used variables and functions.
local floor = math.floor
local infinity = math.huge
local checkType = libraryUtil.checkType
local checkTypeMulti = libraryUtil.checkTypeMulti
--[[
------------------------------------------------------------------------------------
-- isPositiveInteger
--
-- This function returns true if the given value is a positive integer, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a given table key is in the array part or the
-- hash part of a table.
------------------------------------------------------------------------------------
--]]
function p.isPositiveInteger(v)
if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then
return true
else
return false
end
end
--[[
------------------------------------------------------------------------------------
-- isNan
--
-- This function returns true if the given number is a NaN value, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a value can be a valid table key. Lua will
-- generate an error if a NaN is used as a table key.
------------------------------------------------------------------------------------
--]]
function p.isNan(v)
if type(v) == 'number' and tostring(v) == '-nan' then
return true
else
return false
end
end
--[[
------------------------------------------------------------------------------------
-- shallowClone
--
-- This returns a clone of a table. The value returned is a new table, but all
-- subtables and functions are shared. Metamethods are respected, but the returned
-- table will have no metatable of its own.
------------------------------------------------------------------------------------
--]]
function p.shallowClone(t)
local ret = {}
for k, v in pairs(t) do
ret[k] = v
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- removeDuplicates
--
-- This removes duplicate values from an array. Non-positive-integer keys are
-- ignored. The earliest value is kept, and all subsequent duplicate values are
-- removed, but otherwise the array order is unchanged.
------------------------------------------------------------------------------------
--]]
function p.removeDuplicates(t)
checkType('removeDuplicates', 1, t, 'table')
local isNan = p.isNan
local ret, exists = {}, {}
for i, v in ipairs(t) do
if isNan(v) then
-- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
ret[#ret + 1] = v
else
if not exists[v] then
ret[#ret + 1] = v
exists[v] = true
end
end
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- numKeys
--
-- This takes a table and returns an array containing the numbers of any numerical
-- keys that have non-nil values, sorted in numerical order.
------------------------------------------------------------------------------------
--]]
function p.numKeys(t)
checkType('numKeys', 1, t, 'table')
local isPositiveInteger = p.isPositiveInteger
local nums = {}
for k, v in pairs(t) do
if isPositiveInteger(k) then
nums[#nums + 1] = k
end
end
table.sort(nums)
return nums
end
--[[
------------------------------------------------------------------------------------
-- affixNums
--
-- This takes a table and returns an array containing the numbers of keys with the
-- specified prefix and suffix. For example, for the table
-- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will
-- return {1, 3, 6}.
------------------------------------------------------------------------------------
--]]
function p.affixNums(t, prefix, suffix)
checkType('affixNums', 1, t, 'table')
checkType('affixNums', 2, prefix, 'string', true)
checkType('affixNums', 3, suffix, 'string', true)
local function cleanPattern(s)
-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
return s
end
prefix = prefix or ''
suffix = suffix or ''
prefix = cleanPattern(prefix)
suffix = cleanPattern(suffix)
local pattern = '^' .. prefix .. '([1-9]%d*)' .. suffix .. '$'
local nums = {}
for k, v in pairs(t) do
if type(k) == 'string' then
local num = mw.ustring.match(k, pattern)
if num then
nums[#nums + 1] = tonumber(num)
end
end
end
table.sort(nums)
return nums
end
--[[
------------------------------------------------------------------------------------
-- numData
--
-- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table
-- of subtables in the format
-- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
-- Keys that don't end with an integer are stored in a subtable named "other".
-- The compress option compresses the table so that it can be iterated over with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function p.numData(t, compress)
checkType('numData', 1, t, 'table')
checkType('numData', 2, compress, 'boolean', true)
local ret = {}
for k, v in pairs(t) do
local prefix, num = mw.ustring.match(tostring(k), '^([^0-9]*)([1-9][0-9]*)$')
if num then
num = tonumber(num)
local subtable = ret[num] or {}
if prefix == '' then
-- Positional parameters match the blank string; put them at the start of the subtable instead.
prefix = 1
end
subtable[prefix] = v
ret[num] = subtable
else
local subtable = ret.other or {}
subtable[k] = v
ret.other = subtable
end
end
if compress then
local other = ret.other
ret = p.compressSparseArray(ret)
ret.other = other
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- compressSparseArray
--
-- This takes an array with one or more nil values, and removes the nil values
-- while preserving the order, so that the array can be safely traversed with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function p.compressSparseArray(t)
checkType('compressSparseArray', 1, t, 'table')
local ret = {}
local nums = p.numKeys(t)
for _, num in ipairs(nums) do
ret[#ret + 1] = t[num]
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- sparseIpairs
--
-- This is an iterator for sparse arrays. It can be used like ipairs, but can
-- handle nil values.
------------------------------------------------------------------------------------
--]]
function p.sparseIpairs(t)
checkType('sparseIpairs', 1, t, 'table')
local nums = p.numKeys(t)
local i = 0
local lim = #nums
return function ()
i = i + 1
if i <= lim then
local key = nums[i]
return key, t[key]
else
return nil, nil
end
end
end
--[[
------------------------------------------------------------------------------------
-- size
--
-- This returns the size of a key/value pair table. It will also work on arrays,
-- but for arrays it is more efficient to use the # operator.
------------------------------------------------------------------------------------
--]]
function p.size(t)
checkType('size', 1, t, 'table')
local i = 0
for k in pairs(t) do
i = i + 1
end
return i
end
local function defaultKeySort(item1, item2)
-- "number" < "string", so numbers will be sorted before strings.
local type1, type2 = type(item1), type(item2)
if type1 ~= type2 then
return type1 < type2
else -- This will fail with table, boolean, function.
return item1 < item2
end
end
--[[
Returns a list of the keys in a table, sorted using either a default
comparison function or a custom keySort function.
]]
function p.keysToList(t, keySort, checked)
if not checked then
checkType('keysToList', 1, t, 'table')
checkTypeMulti('keysToList', 2, keySort, { 'function', 'boolean', 'nil' })
end
local list = {}
local index = 1
for key, value in pairs(t) do
list[index] = key
index = index + 1
end
if keySort ~= false then
keySort = type(keySort) == 'function' and keySort or defaultKeySort
table.sort(list, keySort)
end
return list
end
--[[
Iterates through a table, with the keys sorted using the keysToList function.
If there are only numerical keys, sparseIpairs is probably more efficient.
]]
function p.sortedPairs(t, keySort)
checkType('sortedPairs', 1, t, 'table')
checkType('sortedPairs', 2, keySort, 'function', true)
local list = p.keysToList(t, keySort, true)
local i = 0
return function()
i = i + 1
local key = list[i]
if key ~= nil then
return key, t[key]
else
return nil, nil
end
end
end
--[[
Returns true if all keys in the table are consecutive integers starting at 1.
--]]
function p.isArray(t)
checkType("isArray", 1, t, "table")
local i = 0
for k, v in pairs(t) do
i = i + 1
if t[i] == nil then
return false
end
end
return true
end
-- { "a", "b", "c" } -> { a = 1, b = 2, c = 3 }
function p.invert(array)
checkType("invert", 1, array, "table")
local map = {}
for i, v in ipairs(array) do
map[v] = i
end
return map
end
--[[
{ "a", "b", "c" } -> { ["a"] = true, ["b"] = true, ["c"] = true }
--]]
function p.listToSet(t)
checkType("listToSet", 1, t, "table")
local set = {}
for _, item in ipairs(t) do
set[item] = true
end
return set
end
--[[
Recursive deep copy function.
Preserves identities of subtables.
]]
local function _deepCopy(orig, includeMetatable, already_seen)
-- Stores copies of tables indexed by the original table.
already_seen = already_seen or {}
local copy = already_seen[orig]
if copy ~= nil then
return copy
end
if type(orig) == 'table' then
copy = {}
for orig_key, orig_value in pairs(orig) do
copy[deepcopy(orig_key, includeMetatable, already_seen)] = deepcopy(orig_value, includeMetatable, already_seen)
end
already_seen[orig] = copy
if includeMetatable then
local mt = getmetatable(orig)
if mt ~= nil then
local mt_copy = deepcopy(mt, includeMetatable, already_seen)
setmetatable(copy, mt_copy)
already_seen[mt] = mt_copy
end
end
else -- number, string, boolean, etc
copy = orig
end
return copy
end
function p.deepCopy(orig, noMetatable, already_seen)
checkType("deepCopy", 3, already_seen, "table", true)
return _deepCopy(orig, not noMetatable, already_seen)
end
--[[
Concatenates all values in the table that are indexed by a number, in order.
sparseConcat{ a, nil, c, d } => "acd"
sparseConcat{ nil, b, c, d } => "bcd"
]]
function p.sparseConcat(t, sep, i, j)
local list = {}
local list_i = 0
for _, v in p.sparseIpairs(t) do
list_i = list_i + 1
list[list_i] = v
end
return table.concat(list, sep, i, j)
end
--[[
-- This returns the length of a table, or the first integer key n counting from
-- 1 such that t[n + 1] is nil. It is similar to the operator #, but may return
-- a different value when there are gaps in the array portion of the table.
-- Intended to be used on data loaded with mw.loadData. For other tables, use #.
-- Note: #frame.args in frame object always be set to 0, regardless of
-- the number of unnamed template parameters, so use this function for
-- frame.args.
--]]
function p.length(t)
local i = 1
while t[i] ~= nil do
i = i + 1
end
return i - 1
end
function p.inArray(arr, valueToFind)
checkType("inArray", 1, arr, "table")
-- if valueToFind is nil, error?
for _, v in ipairs(arr) do
if v == valueToFind then
return true
end
end
return false
end
return p